ClearPoint Bibliography

Download PDF

Clearpoint Neuro Logo

Laser Ablation

Zervos TM, Scarpace L, Robin AM, Schwalb JM, Air EL. Adapting to Space Limitations During Prone Real-Time Magnetic Resonance Imaging-Guided Stereotaxic Laser Ablation: Technical Pearls. Operative Neurosurgery. 2019;18(4). doi:10.1093/ons/opz173.

Bartek J, Alattar A, Jensdottir M, Chen CC. Biopsy and Ablation of H3K27 Glioma Using Skull-Mounted Smartframe Device: Technical Case Report. World Neurosurgery. 2019;127:436-441. doi:10.1016/j.wneu.2019.04.029.

Ahluwalia M, Barnett GH, Deng D, et al. Laser ablation after stereotactic radiosurgery: a multicenter prospective study in patients with metastatic brain tumors and radiation necrosis. Journal of Neurosurgery. 2019;130(3):804-811. doi:10.3171/2017.11.jns171273.

Harris M, Steele J, Williams R, Pinkston J, Zweig R, Wilden JA. MRI-guided laser interstitial thermal thalamotomy for medically intractable tremor disorders. Movement Disorders. 2018;34(1):124-129. doi:10.1002/mds.27545.

Ho AL, Sussman ES, Pendharkar AV, et al. Improved operative efficiency using a real-time MRI-guided stereotactic platform for laser amygdalohippocampotomy. Journal of Neurosurgery. 2018;128(4):1165-1172. doi:10.3171/2017.1.jns162046. 

Larson PS, Vadivelu S, Azmi-Ghadimi H, Nichols A, Fauerbach L, Johnson HB. Neurosurgical laser ablation and MR thermometry: Risks of multisite workflow pattern. Journal of Healthcare Risk Management. 2017;36(4):7-18. doi:10.1002/jhrm.21258.

Rennert RC, Carroll KT, Ali MA, et al. Safety of stereotactic laser ablations performed as treatment for glioblastomas in a conventional magnetic resonance imaging suite. Neurosurgical Focus. 2016;41(4). doi:10.3171/2016.8.focus16217.

Ali MA, Carroll KT, Rennert RC, et al. Stereotactic laser ablation as treatment for brain metastases that recur after stereotactic radiosurgery: a multiinstitutional experience. Neurosurgical Focus. 2016;41(4). doi:10.3171/2016.7.focus16227.

Torcuator RG, Hulou MM, Chavakula V, Jolesz FA, Golby AJ. Intraoperative real-time MRI-guided stereotactic biopsy followed by laser thermal ablation for progressive brain metastases after radiosurgery. Journal of Clinical Neuroscience. 2016;24:68-73. doi:10.1016/j.jocn.2015.09.008

Mccracken DJ, Willie JT, Fernald BA, et al. Magnetic Resonance Thermometry-Guided Stereotactic Laser Ablation of Cavernous Malformations in Drug-Resistant Epilepsy: Imaging and Clinical Results. Operative Neurosurgery. 2015;12(1):39-48. doi:10.1227/neu.0000000000001033.

Gross RE, Willie JT, Drane DL. The Role of Stereotactic Laser Amygdalohippocampotomy in Mesial Temporal Lobe Epilepsy. Neurosurgery Clinics of North America. 2016;27(1):37-50. doi:10.1016/j.nec.2015.08.004.

Gross RE, Willie JT. Response to Journal Club: Real-time Magnetic Resonance-Guided Stereotactic Laser Amygdalohippocampotomy for Mesial Temporal Lobe Epilepsy. Neurosurgery. 2015;77(3). doi:10.1227/neu.0000000000000876.

Drane DL, Loring DW, Voets NL, et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia. 2014;56(1):101-113. doi:10.1111/epi.12860.

Willie JT, Tung JK, Gross RE. Chapter 16: MRI-Guided Stereotactic Laser Ablation. Image-Guided Neurosurgery. 2015:375-403. doi:10.1016/b978-0-12-800870-6.00016-9.

Willie JT, Laxpati NG, Drane DL, et al. Real-Time Magnetic Resonance-Guided Stereotactic Laser Amygdalohippocampotomy for Mesial Temporal Lobe Epilepsy. Neurosurgery. 2014;74(6):569-585. doi:10.1227/neu.0000000000000343.

DBS Lead Placement:

Martin AJ, Larson PS, Ziman N, et al. Deep brain stimulator implantation in a diagnostic MRI suite: infection history over a 10-year period. Journal of Neurosurgery. 2017;126(1):108-113. doi:10.3171/2015.7.jns15750

Lahue SC, Ostrem JL, Galifianakis NB, et al. Parkinsons disease patient preference and experience with various methods of DBS lead placement. Parkinsonism & Related Disorders. 2017;41:25-30. doi:10.1016/j.parkreldis.2017.04.010.

Sidiropoulos C, Rammo R, Merker B, et al. Intraoperative MRI for deep brain stimulation lead placement in Parkinson’s disease: 1 year motor and neuropsychological outcomes. Journal of Neurology. 2016;263(6):1226-1231. doi:10.1007/s00415-016-8125-0.

Chansakul T, Chen PN, Lee TC, Tierney T. Interventional MR Imaging for Deep-Brain Stimulation Electrode Placement. Radiology. 2016;281(3):940-946. doi:10.1148/radiol.2015151136.

Rolston JD, Englot DJ, Starr PA, Larson PS. An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: Analysis of multiple databases. Parkinsonism & Related Disorders. 2016;33:72-77. doi:10.1016/j.parkreldis.2016.09.014

Azmi H, Gupta F, Vukic M, et al. Interventional magnetic resonance imaging-guided subthalamic nucleus deep brain stimulation for Parkinson′s disease: Patient selection. Surgical Neurology International. 2016;7(20):557. doi:10.4103/2152-7806.187537.

Southwell DG, Narvid JA, Martin AJ, Qasim SE, Starr PA, Larson PS. Comparison of Deep Brain Stimulation Lead Targeting Accuracy and Procedure Duration between 1.5- and 3-Tesla Interventional Magnetic Resonance Imaging Systems: An Initial 12-Month Experience. Stereotactic and Functional Neurosurgery. 2016;94(2):102-107. doi:10.1159/000443407.

Ostrem JL, Ziman N, Galifianakis NB, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. Journal of Neurosurgery. 2016;124(4):908-916. doi:10.3171/2015.4.jns15173.

Larson, P. & et al. (2016). Interventional MRI-Guided DBS: A Practical Atlas. This book is available for download with iBooks on your Mac or iOS device: https://books.apple.com/us/book/interventional-mri-guided-dbs/id554568402

Sidiropoulos C, Mubita L, Krstevska S, Schwalb JM. Successful Vim targeting for mixed essential and parkinsonian tremor using intraoperative MRI. Journal of the Neurological Sciences. 2015;358(1-2):488-489. doi:10.1016/j.jns.2015.08.1553.

Chabardes S, Isnard S, Castrioto A, et al. Surgical implantation of STN-DBS leads using intraoperative MRI guidance: technique, accuracy, and clinical benefit at 1-year follow-up. Acta Neurochirurgica. 2015;157(4):729-737. doi:10.1007/s00701-015-2361-4.

Ivan ME, Yarlagadda J, Saxena AP, et al. Brain shift during bur hole–based procedures using interventional MRI. Journal of Neurosurgery. 2014;121(1):149-160. doi:10.3171/2014.3.jns121312.

Starr PA, Markun LC, Larson PS, Volz MM, Martin AJ, Ostrem JL. Interventional MRI–guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system. Journal of Neurosurgery: Pediatrics. 2014;14(4):400-408. doi:10.3171/2014.6.peds13605.

Vega RA, Holloway KL, Larson PS. Image-Guided Deep Brain Stimulation. Neurosurgery Clinics of North America. 2014;25(1):159-172. doi:10.1016/j.nec.2013.08.008.

Sillay KA, Rusy D, Buyan-Dent L, Ninman NL, Vigen KK. Wide-bore 1.5T MRI-guided deep brain stimulation surgery: initial experience and technique comparison. Clinical Neurology and Neurosurgery. 2014;127:79-85. doi:10.1016/j.clineuro.2014.09.017.

Larson P, Starr PA, Ostrem JL, Galifianakis N, Palenzuela MSL, Martin A. Application Accuracy of a Second Generation Interventional MRI Stereotactic Platform. Neurosurgery. 2013;60:187. doi:10.1227/01.neu.0000432793.68257.ab.

Ostrem J, Galafianakis N, Markum L, et al. Clinical outcomes of PD patients having bilateral STN DBS using high-field interventional MR-imaging for lead placement. Clinical Neurology and Neurosurgery. 2013;115(6):708-712. doi:10.1016/j.clineuro.2012.08.019.

Larson PS, Starr PA, Bates G, et al. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery. 2012 Mar;70(1 Suppl Operative):95-103; discussion 103. doi: 10.1227/NEU.0b013e31822f4a91.

Biopsy:

Bartek J Jr, Alattar A, Jensdottir M, Chen CC. Biopsy and Ablation of H3K27 Glioma Using Skull-Mounted Smartframe Device: Technical Case Report. World Neurosurgery. 2019;127:436–441. doi:10.1016/j.wneu.2019.04.029.

Carroll KT, Lochte BC, Chen JY, Snyder VS, Carter BS, Chen CC. Intraoperative Magnetic Resonance Imaging-Guided Biopsy in the Diagnosis of Suprasellar Langerhans Cell Histiocytosis. World Neurosurgery. 2018;112:6–13. doi:10.1016/j.wneu.2017.12.184.

Torcuator RG, Hulou MM, Chavakula V, Jolesz FA, Golby AJ. Intraoperative real-time MRI-guided stereotactic biopsy followed by laser thermal ablation for progressive brain metastases after radiosurgery. Journal of Clinical Neuroscience. 2016;24:68–73. doi:10.1016/j.jocn.2015.09.008.

Mohyeldin A, Lonser RR, Elder JB. Real-time magnetic resonance imaging-guided frameless stereotactic brain biopsy: technical note. Journal of Neurosurgery. 2016;124(4):1039–1046. doi:10.3171/2015.5.JNS1589.

Drug Delivery:

Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. Journal of Neurosurgery. 2017;126(1):191–200. doi:10.3171/2016.1.JNS151591.

Han SJ, Bankiewicz K, Butowski NA, Larson PS, Aghi MK. Interventional MRI-guided catheter placement and real time drug delivery to the central nervous system. Expert Review of Neurotherapeutics. 2016;16(6):635–639. doi:10.1080/14737175.2016.1175939

Rowland NC, Kalia SK, Kalia LV, Larson PS, Lim DA, Bankiewicz KS. Merging DBS with viral vector or stem cell implantation: "Hybrid" stereotactic surgery as an evolution in the surgical treatment of Parkinson's disease. Molecular Therapy Methods & Clinical Development. 2016;3:15051. doi:10.1038/mtm.2015.51.

Chittiboina P, Heiss JD, Lonser RR. Accuracy of direct magnetic resonance imaging-guided placement of drug infusion cannulae. Journal of Neurosurgery. 2015;122(5):1173–1179. doi:10.3171/2014.11.JNS131888.

Silvestrini MT, Yin D, Martin AJ, et al. Interventional magnetic resonance imaging-guided cell transplantation into the brain with radially branched deployment. Molecular Therapy Methods & Clinical Development. 2015;23(1):119–129. doi:10.1038/mt.2014.155.

Richardson RM, Kells AP, Martin AJ, et al. Novel platform for MRI-guided convection-enhanced delivery of therapeutics: preclinical validation in nonhuman primate brain. Stereotactic and Functional Neurosurgery. 2011;89(3):141–151. doi:10.1159/000323544.

Richardson RM, Kells AP, Rosenbluth KH, et al. Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson's disease. Molecular Therapy. 2011;19(6):1048–1057. doi:10.1038/mt.2011.11.


ClearPoint Neuro, Inc. Indications for Use (K142505): The ClearPoint® System is intended to provide stereotactic guidance for the placement and operation of instruments or devices during planning and operation of neurological procedures within the MRI environment and in conjunction with MR imaging.  The ClearPoint System is intended as an integral part of procedures that have traditionally used stereotactic methodology.  These procedures include biopsies, catheter and electrode insertion including deep brain stimulation (DBS) lead placement.  The System is intended for use only with 1.5 and 3.0 Tesla MRI scanners and MR Conditional implants and devices. The user should consult the “Navigational Accuracy” section of the User’s Guide to assess if the accuracy of the system is suitable for their needs.